forcatsとpurrrを組み合わせることで、複雑なカテゴリカルデータの分析を効率的かつエレガントに実現できます。
                    ここでは実際のビジネスシナリオを想定した高度な応用例を紹介します。
                
                
                    
                    
                        
                        multilingual_data <- list(
                          japanese = tibble(
                            satisfaction = sample(c("とても不満", "不満", "普通", "満足", "とても満足"), 200, TRUE),
                            product = sample(c("製品A", "製品B", "製品C"), 200, TRUE),
                            country = "Japan"
                          ),
                          english = tibble(
                            satisfaction = sample(c("Very Unsatisfied", "Unsatisfied", "Neutral", "Satisfied", "Very Satisfied"), 150, TRUE),
                            product = sample(c("Product A", "Product B", "Product C"), 150, TRUE),
                            country = "USA"
                          ),
                          chinese = tibble(
                            satisfaction = sample(c("非常不满", "不满", "一般", "满意", "非常满意"), 180, TRUE),
                            product = sample(c("产品A", "产品B", "产品C"), 180, TRUE),
                            country = "China"
                          )
                        )
                        
                        
                        satisfaction_mapping <- list(
                          japanese = c(
                            "とても不満" = "Very Unsatisfied",
                            "不満" = "Unsatisfied",
                            "普通" = "Neutral",
                            "満足" = "Satisfied",
                            "とても満足" = "Very Satisfied"
                          ),
                          chinese = c(
                            "非常不满" = "Very Unsatisfied",
                            "不满" = "Unsatisfied",
                            "一般" = "Neutral",
                            "满意" = "Satisfied",
                            "非常满意" = "Very Satisfied"
                          )
                        )
                        
                        product_mapping <- list(
                          japanese = c("製品A" = "Product A", "製品B" = "Product B", "製品C" = "Product C"),
                          chinese = c("产品A" = "Product A", "产品B" = "Product B", "产品C" = "Product C")
                        )
                        
                        
                        standardized_data <- multilingual_data %>%
                          imap_dfr(~ {
                            language <- .y
                            data <- .x
                            
                            
                            if(language != "english") {
                              data$satisfaction <- fct_recode(data$satisfaction, !!!satisfaction_mapping[[language]])
                              data$product <- fct_recode(data$product, !!!product_mapping[[language]])
                            }
                            
                            
                            data$satisfaction <- fct_relevel(data$satisfaction, 
                                                               "Very Unsatisfied", "Unsatisfied", "Neutral", "Satisfied", "Very Satisfied")
                            
                            data %>% mutate(language = language)
                          })
                        
                        
                        country_analysis <- standardized_data %>%
                          group_by(country, product) %>%
                          nest() %>%
                          mutate(
                            
                            satisfaction_scores = map(data, ~ as.numeric(.x$satisfaction)),
                            mean_score = map_dbl(satisfaction_scores, mean),
                            median_score = map_dbl(satisfaction_scores, median),
                            count = map_int(data, nrow)
                          ) %>%
                          select(-data, -satisfaction_scores) %>%
                          arrange(desc(mean_score))